Holospinal epidural abscess of the spinal axis: two illustrative cases with review of treatment strategies and surgical techniques

Gabriel A. Smith, M.D., Arshneel S. Kochar, B.A., Sunil Manjila, M.D., Kaine Onwuzulike, M.D., Ph.D., Robert T. Geertman, M.D., Ph.D., James S. Anderson, M.D., and Michael P. Steinmetz, M.D.

Department of Neurological Surgery, University Hospitals, Case Medical Center; Case Western Reserve University School of Medicine; and Department of Neurological Surgery, MetroHealth Medical Center, Cleveland, Ohio

Despite the increasing prevalence of spinal infections, the subcategory of holospinal epidural abscesses (HEAs) is extremely infrequent and requires unique management. Panspinal imaging (preferably MRI), modern aggressive antibiotic therapy, and prompt surgical intervention remain the standard of care for all spinal axis infections including HEAs; however, the surgical decision making on timing and extent of the procedure still remain ill defined for HEAs. Decompression including skip laminectomies or laminoplasties is described, with varied clinical outcomes. In this review the authors present the illustrative cases of 2 patients with HEAs who were treated using skip laminectomies and epidural catheter irrigation techniques. The discussion highlights different management strategies including the role of conservative (nonsurgical) management in these lesions, especially with an already identified pathogen and the absence of mass effect on MRI or significant neurological defects.

Holospinal epidural abscesses (HEAs) are exceedingly rare, with very few documented cases in the literature. Nearly 20% were treated successfully with medical therapy alone if neurologically intact. None of the reported cases had an associated cranial infection with HEA, because the dural adhesion around the foramen magnum prevented rostral spread of infection. Traditionally a posterior approach to the epidural space with irrigation is performed, unless an extensive focal ventral collection is causing cord compression. Surgical intervention for HEA should be an adjuvant treatment strategy for all acutely deteriorating patients, whereas aspiration of other infected sites like a psoas abscess can determine an infective pathogen, and appropriate antibiotic treatment may avoid surgical intervention in the neurologically intact patient.

(http://thejns.org/doi/abs/10.3171/2014.5.FOCUS14136)

Key words • epidural abscess • spinal infection • skip laminectomy • holospinal epidural abscess

Abbreviations used in this paper: HEA = holospinal epidural abscess; MRSA = methicillin-resistant Staphylococcus aureus.

Illustrative Cases

Case 1

History and Examination. A 5-year-old boy with no known medical history presented with a single day of progressively worsening abdominal, hip, and leg pain. His parents noted progressive weakness of his legs with ascending sensory loss. On arrival in the emergency room,
his neurological examination was notable for 0/5 strength, decreased sensation and hyporeflexia in bilateral lower extremities, 4/5 strength in bilateral upper extremities, sensory level at T-2, and loss of rectal tone. Temperature was 39.2°C, and he had a profound leukocytosis of 47.9 × 10^3/µl with 93% bands. His C-reactive protein level was 22.1 (normal < 1.0 mg/dl). An MRI study of the spine revealed an abnormal 5-mm-thick epidural fluid collection posterolaterally from C-1 to the bottom of the sacral canal that was highly suggestive of HEA with cord compression (Fig. 1).

Operation and Postoperative Course. Given these findings and his acute paraplegia, the patient was taken to the operating room and underwent emergency laminectomies at C6–7, T7–8, and L-1 through 3 separate incisions. An epidural catheter was used to irrigate any liquefied pus above and below each laminectomy site. Drains were placed both in the epidural space and above the fascia, and the incisions were closed in a typical fashion. Postoperatively he was placed on broad-spectrum antibiotics. His cultures grew methicillin-resistant Staphylococcus aureus (MRSA), his antibiotics were then narrowed to linezolid, and he completed a 12-week course of treatment. Additional workup revealed endocarditis, hip effusions, and subperiosteal tibial abscesses. He was discharged 3.5 weeks postoperatively to a rehabilitation facility, where he was noted to have improved sphincter and bladder function. His neurological examination performed at the time showed unchanged motor strength but improved tone present in his ankle and hips, with a sensory level at T-3. The 1- and 3-month follow-up MRI studies showed complete resolution of the epidural abscess; however, his examination results had not improved with rehabilitation.

Case 2

History and Examination. A 51-year-old man with no known medical history presented with several days of worsening back pain, but no lower-extremity weakness. On presentation to the emergency department he was afebrile at 36.1°C, with a white blood cell count of 24 × 10^3/µl, and a C-reactive protein level of 42.3 mg/dl (normal < 1.0). Neurological examination results were notable for profound diaphoresis and diffuse tenderness to palpation over his back, but he had full strength. An MRI study revealed extensive epidural abscess circumferentially throughout the entire spinal canal, but it was worst at the thoracolumbar junction (Fig. 2).

Operation and Postoperative Course. The patient was taken to the operating room for an emergency evacuation. Laminectomy of L-3 was done, and ample white purulent material was encountered. Samples were obtained and sent for Gram stain and culture, and a catheter was used to wash out the epidural space rostral and caudal to the laminectomy. Six days later, his neurological examination deteriorated and he was quadriparetic. Emergency MRI studies showed interval increased size of a ventral collection at the craniovertebral junction posterior to the clivus, with cord compression. The patient was taken to the operating room for an emergency C1–2 laminectomy. No epidural catheters were used in this approach. He was discharged to rehabilitation 3 weeks after admission with greatly improved upper-extremity strength (5/5) bilaterally, but no change in the results of his lower-extremity examination, which remained 1/5 bilaterally. His cultures were positive for MRSA, and he completed a 3-month course of linezolid and rifampin. Fourteen weeks postoperatively, he gained some strength in dorsiflexion and plantar flexion of the left foot, with Grade 3/5 and 4/5 strength, respectively. Initial 2-month postoperative MRI studies showed total resolution of the cervical epidural collection and decreased swelling of the cervical spine. By 11 months postoperatively, he was ambulating with assistance and with minimal residual weakness.

Discussion

As detailed by Chen et al., spinal epidural abscesses were first reported by Morgagni in 1761 and represent 1 of
Holospinal epidural abscess of the spinal axis

10,000 hospital admissions annually in the US. To our knowledge, fewer than 25 reported cases of HEA exist in the literature. Known risk factors for HEA in adults include diabetes mellitus, intravenous drug abuse, immunosuppression (Crohn’s disease, malignancy, steroid use, cirrhosis, and hepatitis), and pregnancy. Holospinal epidural abscesses classically present with severe spinal pain, myelopathic or radicular deficits, profound leukocytosis, and elevations in inflammatory markers. Blood cultures are essential in early pathogen identification and are positive in up to 60% of cases. Extensive psoas abscesses and contiguous soft-tissue infections are also well described.

In most cases HEAs are associated with *S. aureus* infections, with no predisposition for age or an immunocompromised state. The natural history of spinal epidural abscesses suggests that they spread contiguously or hematogenously, and we hypothesize that HEAs develop differently. Diagnosis is typically by MRI, and these cases highlight the critical role of imaging of the entire neural axis because paraspinal, psoas, and even adjacent abdominal infections can occur. Risk factors for failure of medical therapy include deteriorating neurological examination, persistent bacteremia, age older than 65 years, and MRSA as the identified pathogen. Use of MRI is essential for delineating phlegmon from liquid pus prior to determining a surgical approach. Homogeneous enhancement on T1-weighted sequences obtained with Gd, and hyperintensity throughout the lesion on T2-weighted sequences is more consistent with phlegmon, whereas bright rim enhancement with a hypointense core on T1-weighted images is suggestive of liquid pus.

Emergency surgical intervention is often required, especially in the neurologically deteriorating patient. Ongoing debate exists regarding the pathophysiological mechanisms of neurological deterioration in spinal epidural abscesses. Rabbit model studies with direct inoculation are suggestive of focal cord compression as a causative factor. However, hematogenous spread is also a well-known etiology. In these cases, arteritis, venous thrombosis, or septic thrombophlebitis leading to spinal cord infarction have been found postmortem, representing the most likely causative mechanism for neurological deterioration. The pathophysiology of spinal cord injury in the setting of infection is an area of active research; however, a monkey model elucidated that high cervical cord compression from tumors leads to venous stasis and hypoxic changes in the spinal cord. These data prove that arterial and venous compromise from both compression and direct thrombophlebitis contribute to spinal cord injury in the setting of epidural abscesses. Even in neurologically intact patients with abscess above the conus, serious acute to subacute complications can occur from direct compression or these vascular changes.

The mainstay of treatment for any neuraxis infection remains broad-spectrum antibiotics. In bacterial meningitis, the consequences of inflammation and arteritis can cause significant morbidity, including profound hearing loss. The literature does support using steroids to quell this inflammation and to prevent significant morbidity. In the deteriorating patient with HEA, steroids remain controversial, and further research is necessary to elucidate their efficacy; however the authors believe that the potential benefit outweighs the risks in the acutely deteriorating patient. Blood pressure augmentation is also an area of debate, and has not been studied thoroughly in patients with spinal epidural abscess specifically. However, in neurologically deteriorating patients with trauma it is well known that hypotension is a significant predictor of morbidity and mortality. We would argue that this literature can also be applied to the management of neurologically deteriorating patients with spinal axis infections, and recommend maintaining normotensive blood pressures to prevent cord ischemia.

The goals of surgery are always to decompress the neural elements, evacuate infection, identify the pathogen, and stabilize the spine (if needed) with minimal instrumentation. These goals can be met easily when treating focal epidural abscesses; however, when a large...
number of vertebral levels are involved, potential destabi-
lation can result from the decompression. The surgical
strategy in Case 1 was evacuation of as much liquid
pus as possible through equidistant laminotomies and
adjuvant catheter irrigation in the cervical, thoracic, and
lumbar spine. In Case 2 a different strategy was imple-
mented. Lower-extremity weakness was present and focal
compression was seen at the level of the conus. Direct
decompression with irrigation rostrally and caudally was
performed at the thoracolumbar junction, but unfortu-
nately neurological deterioration and repeat imaging re-
vealed focal compression in the axial cervical spine that
required decompression.

In a review of 19 HEA cases reported in the literature
(Table 1), the age at presentation is variable, ranging from
infant to elderly patients. Neurological examination at the
time of presentation is critical to the diagnosis and treatment
strategies that prior authors have implemented. In total, 4 of
the 19 cases were treated without surgical inter-
vention and the patients made full recoveries. Nonsurgical
therapy, especially above the conus, has been previ-
ously condemned by some authors, and yet these cases
suggest a role for nonsurgical therapy alone.15,18 In the set-
ting of HEA, nonsurgical therapy must be recommended
with extreme caution because the majority of cases in the
literature (15 of 19) presented with neurological deterio-
ration. Unfortunately in 1 case, cardiopulmonary arrest
occurred prior to surgical intervention, highlighting the
inherent severity of HEAs. Soft-tissue infections includ-
ing psoas or paraspinal abscesses were present in 7 of 19
cases, and were associated with anteriorly located com-
ponents. Psoas abscesses were notably all associated with
S. aureus if in conjunction with HEAs.20 Endocarditis
was documented in only one of the cases reported. More-
over, only 2 cases were associated with intravenous drug
abuse.20 Crohn’s disease, uncontrolled diabetes mellitus,
hepatitis, and rheumatoid arthritis were present in 7 of
19 cases.

The vast majority of cases were treated with lami-
notomies without instrumentation, and the use of epidural
catheter irrigation was well described in 10 of 14 opera-
tive cases. Our theory is that indirect catheter irrigation
diminished the burden of infection, prevented further inflam-
mation to the epidural vasculature, and decom-
pressed the thecal sac effectively in all cases document-
ed. In all cases reviewed, surgeons were careful to avoid
surgical decompression of the cervicothoracic, thoraco-
olumbar, or lumbosacral junction to prevent destabiliza-
tion.2,10,14,27,37 Moreover, catheter irrigation and aspiration
of a panspinal collection appears to be safe and allows
surgeons to avoid these junctions to improve evacuation.
The volume of pus necessary to consider catheter irriga-
tion remains unclear, and further research is needed on
this topic.

A laminectomy may be adequate for a ventral fo-
cus of liquid pus, but this will not adequately address a
ventrally situated area of compression from phlegmon,
debris, or a kyphotic deformity. In the cases reported in
the literature, treatment was successful from a posterior
approach in all except one, which required an aggressive
transoral odontoidectomy for ventral spinal cord com-
pression.30 As seen in the aforementioned case reported
by Lau et al., a large compressive ventral phlegmon com-
ponent poses a much more difficult problem (see also Baaj
et al.4). Direct decompression in the subaxial cervical
spine with disectomy(s) or a corpectomy(s) with evac-
uation of the ventral abscess under direct visualization
should be considered, especially in the setting of focal
vertebral osteomyelitis. The use of interbody arthrodesis
and instrumentation is effective and safe even in the face
of active infection, and should be used for stabilization;
however, this is rarely needed in HEA evacuations.2,11,28,44
Above the foramen magnum, infection was only present
in ventral collections because dural leaflets are known to
prevent intracranial spread.42 Below the cervical spine,
extended approaches such as a costotransversectomy with
a transpedicular approach can be used to achieve ventral
access in the thoracic spine if inherent spinal destabiliza-
tion is also present. The surgeon can also consider using
a lateral extracavitary or thoracotomy in these instances
for decompression when anterior stabilization is required.
However, we believe that these approaches are not neces-
ary in the setting of HEA unless a focal ventral compres-
sive lesion is present with no identified pathogen. In all of
the reviewed cases, a posterior approach was sufficient
for HEA evacuation with an epidural catheter irrigation
technique, because HEAs are predominantly liquid pus.

Khanna et al. reported 3 factors that are independ-
ently associated with poor outcome in spinal epidural
abscesses: patient age, degree of thecal sac compression,
and duration of symptoms.26 Moreover, a declining ex-
amination in the absence of paralysis for less than 36
hours has been associated with better survival and return
of function.29,33 In the high-risk surgical patient or in one
with irreversible fixed paralysis, surgical decision making
remains even more controversial. A CT-directed needle
aspiration for pathogen diagnosis and medical therapy has
been traditionally used in this patient population; how-
ever, this treatment strategy has not been proven or used for
HEA cases.2,9,14 Recovery appears variable specifically in
the setting of HEA; however, neurological improvement
is documented up to 13 months after presentation in some
cases in the literature.

Conclusions

Patients suspected of having a spinal epidural abscess
or HEA require emergency evaluation. Most patients
present with neck or back pain, myelopathy, or profound
neurological deficits in the setting of systemic signs of in-
festation. Emergency MRI studies of the spinal axis, blood
cultures, and a surgical evaluation should be performed.
If an HEA is found on imaging, surgical approaches must
be considered based on neurological examination results
and risk factors for failure of medical therapy.27,37 In the
setting of a neurologically intact patient or one improving
on broad-spectrum antibiotics with a known pathogen,
surgical intervention may not be required (as seen in 4
of 19 cases presented); however, this treatment strategy
must be followed with caution because neurological de-
terioration can be life-threatening in the setting of HEA.
We must caution that radiographic signs of a compressive
TABLE 1: Literature review of 19 HEAs reported between 1991 and 2014*

<table>
<thead>
<tr>
<th>Authors & Year</th>
<th>Patient Age</th>
<th>Comorbidities</th>
<th>Results of Examination†</th>
<th>MRI Findings</th>
<th>Pathogen</th>
<th>Surgery Performed</th>
<th>Epidural Irrigation Used</th>
<th>Instrumentation Used</th>
<th>Follow-Up†</th>
</tr>
</thead>
<tbody>
<tr>
<td>present cases</td>
<td>5 yrs</td>
<td>endocarditis, hip & tibial abscesses</td>
<td>4/5 bilat UEs, 0/5 bilat LEs</td>
<td>HEA C1–S1 dorsal to SC</td>
<td>MRSA</td>
<td>yes</td>
<td>no</td>
<td>1 mo; 1/5 bilat HF, DF/PP</td>
<td></td>
</tr>
<tr>
<td></td>
<td>51 yrs</td>
<td>none</td>
<td>4+/5 bilat UEs, 1/5 bilat LEs, then worsening UE weakness to 0/5</td>
<td>HEA C1–S1 circumferential</td>
<td>MRSA</td>
<td>yes</td>
<td>no</td>
<td>11 mos; 5/5 bilat UEs, 4+/5 bilat LEs</td>
<td></td>
</tr>
<tr>
<td>Shiu et al., 2014</td>
<td>69 yrs</td>
<td>DM II, bilat psoas abscess</td>
<td>quadriplegia, 1/5 bilat UEs & LEs</td>
<td>HEA C1–S1 dorsally, ventrally L2–3, vertebral osteomyelitis L3–4</td>
<td>Streptococcus intermedius</td>
<td>no</td>
<td>no</td>
<td>6 wks; 2/5 bilat UEs & LEs</td>
<td></td>
</tr>
<tr>
<td>Burton et al., 2013</td>
<td>30 yrs</td>
<td>HCV, IVDU, 22 wks pregnant, psoas abscess</td>
<td>full strength w/ prog deterioration to 1/5 bilat LEs</td>
<td>HEA C1–S1 dorsal to SC</td>
<td>S. aureus</td>
<td>yes</td>
<td>no</td>
<td>3 mos; full strength, urinary retention</td>
<td></td>
</tr>
<tr>
<td>Lin et al., 2013</td>
<td>41 yrs</td>
<td>DM II</td>
<td>quadriplegia, 0/5 bilat UEs & LEs</td>
<td>HEA dorsal C1–S1</td>
<td>oxacillin-resistant S. capitis</td>
<td>none</td>
<td>NA</td>
<td>NA</td>
<td>lost to follow-up</td>
</tr>
<tr>
<td>Shoaezemi et al., 2013</td>
<td>44 yrs</td>
<td>psoas, paraspinal abscess</td>
<td>prog quadriplegia, 0/5 strength in all 4 limbs</td>
<td>HEA C1–S1 dorsal to SC</td>
<td>MSSA</td>
<td>yes</td>
<td>no</td>
<td>6 mos; 4+/5 strength throughout</td>
<td></td>
</tr>
<tr>
<td>Lau et al., 2014</td>
<td>50 yrs</td>
<td>DM II</td>
<td>deltoit 1/5, biceps/triceps/hand grip 2/5, 5/5 in LEs</td>
<td>HEA C1–S1 ventral to T-5, dorsal T5–S1</td>
<td>MSSA</td>
<td>yes</td>
<td>yes</td>
<td>13 mos; 4/5 in UEs</td>
<td></td>
</tr>
<tr>
<td></td>
<td>46 yrs</td>
<td>none</td>
<td>0/5 in LEs except 2/5 rt HF</td>
<td>HEA C1–L5 dorsal to SC</td>
<td>MSSA</td>
<td>yes</td>
<td>no</td>
<td>1 mo; 3/5 bilat LEs</td>
<td></td>
</tr>
<tr>
<td>O’Brien et al., 2011</td>
<td>71 yrs</td>
<td>DM II</td>
<td>4+/5 diffusely</td>
<td>HEA C1–S1 ventral to SC</td>
<td>UK</td>
<td>none</td>
<td>NA</td>
<td>NA</td>
<td>2 mos; full strength</td>
</tr>
<tr>
<td>Tahir et al., 2010</td>
<td>38 yrs</td>
<td>IVDU, HCV</td>
<td>rt LE 3/5, lt LE 2/5</td>
<td>HEA C1–S1 ventral to SC</td>
<td>MSSA</td>
<td>yes</td>
<td>no</td>
<td>12 mos; 5/5 bilat LEs; ambulating w/o support</td>
<td></td>
</tr>
<tr>
<td>Elsamaloty et al., 2010</td>
<td>53 yrs</td>
<td>none</td>
<td>1/5 bilat UEs, 0/5 bilat LEs</td>
<td>HEA C1–L1 dorsal to SC</td>
<td>MSSA</td>
<td>multi-level laminectomies at C5–6, T2–3, & L1–2</td>
<td>UK</td>
<td>no</td>
<td>6 mos; bilat UEs 4+/5, bilat LEs 3/5 proximally, 4/5 distally</td>
</tr>
<tr>
<td>Gorchynski et al., 2009</td>
<td>33 yrs</td>
<td>forearm, psoas abscess</td>
<td>rt LE (0/5), lt LE (4/5)</td>
<td>HEA C1–L5 dorsal to SC</td>
<td>MRSA</td>
<td>segmental laminectomies C2–L5</td>
<td>UK</td>
<td>no</td>
<td>12 mos; rt LE weakness 3/5</td>
</tr>
<tr>
<td>Ghosh et al., 2009</td>
<td>7 mos</td>
<td>psoas abscess</td>
<td>full strength</td>
<td>HEA C2–L1 dorsal to SC</td>
<td>MRSA</td>
<td>none</td>
<td>NA</td>
<td>NA</td>
<td>2 mos; full strength</td>
</tr>
</tbody>
</table>

(continued)
TABLE 1: Literature review of 19 HEAs reported between 1991 and 2014*

<table>
<thead>
<tr>
<th>Authors & Year</th>
<th>Patient Age</th>
<th>Comorbidities</th>
<th>Results of Examination†</th>
<th>MRI Findings</th>
<th>Pathogen</th>
<th>Surgery Performed</th>
<th>Epidural Irrigation Used</th>
<th>Instrumentation Used</th>
<th>Follow-Up†</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vaught, 2009</td>
<td>35 yrs</td>
<td>none</td>
<td>prog quadriplegia</td>
<td>HEA C2–S1 dorsal to SC</td>
<td>UK</td>
<td>C1–7, T1–6, T-11, L2–4 laminotomies</td>
<td>yes</td>
<td>no</td>
<td>5 mos; full strength</td>
</tr>
<tr>
<td>Smith & Kavar, 2010</td>
<td>25 yrs</td>
<td>Crohn’s disease</td>
<td>bilat LEs 0/5, rt UE deltoid 3/5, Lt UE hand grip 3/5</td>
<td>HEA C2–S1 ventral & dorsal, RCF</td>
<td>polymicrobial</td>
<td>C-5, T-8, L-3 laminotomies</td>
<td>yes</td>
<td>no</td>
<td>2 mos; 4/5 bilat UEs, 0/5 bilat LEs</td>
</tr>
<tr>
<td>Van Bergen et al., 2009</td>
<td>50 yrs</td>
<td>none</td>
<td>5/5 full strength</td>
<td>HEA C2–L3 dorsal to SC</td>
<td>MRSA</td>
<td>none</td>
<td>NA</td>
<td>NA</td>
<td>2 mos; full strength</td>
</tr>
<tr>
<td>Parkinson & Sekhon, 2004</td>
<td>48 yrs</td>
<td>none</td>
<td>asymmetrical tetraparesis (rt > lt)</td>
<td>HEA C1–S1 dorsal to SC</td>
<td>Streptococcus milleri</td>
<td>C2–T5 & T8–L5 laminectomies</td>
<td>no</td>
<td>no</td>
<td>12 mos; mod imp—unable to ambulate w/o assistance</td>
</tr>
<tr>
<td>Leonard & Kaufman, 2001</td>
<td>5 wks</td>
<td>sacral & paraspinal abscess, presacral teratoma</td>
<td>no deficits noted</td>
<td>HEA C1–L5 dorsal to SC</td>
<td>UK</td>
<td>L3–4 laminotomies</td>
<td>yes</td>
<td>no</td>
<td>2 mos; full strength</td>
</tr>
<tr>
<td>Simpson et al., 1991</td>
<td>63 yrs</td>
<td>RA</td>
<td>prog quadriplegia</td>
<td>C2–L5 ventral lesion on CTM</td>
<td>UK</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>CP arrest before evacuation</td>
</tr>
</tbody>
</table>

* CP = cardiopulmonary; CTM = CT myelogram; DF = dorsiflexion; DM II = Type II diabetes mellitus; HCV = hepatitis C; HF = hip flexion; IVDU = intravenous drug use; LE = lower extremity; mod imp = moderate improvement; MSSA = methicillin-sensitive Staph. aureus; NA = not applicable; PF = plantar flexion; prog = progressive; RA = rheumatoid arthritis; RCF = retrosigmoid colonic fistula; SC = spinal cord; TO = transoral odontoidectomy; UE = upper extremity; UK = unknown.

† Values expressed according to the Medical Research Council scale (0/5 to 5/5).
Holospinal epidural abscess of the spinal axis

lesion or signs of inflammation such as spinal cord signal changes or edema on MRI studies are red flags, and early surgical evacuation should be considered regardless of neurologic status. A surgical approach with posterior laminectomies and catheter irrigation of the epidural space is efficacious and safe in the treatment of liquid pus, which predominates in HEAs, but this approach may not be sufficient if a large ventral component is found above the conus or if phlegmon is present on imaging. We must emphasize that the most important aspect of treatment of HEA remains immediate initiation of broad-spectrum intravenous antibiotics and aggressive medical care. Early surgical intervention for HEA should be an adjuvant treatment strategy for all acutely deteriorating patients.

Disclosure

Dr. Steinmetz is a consultant for Stryker Spine, Biomet Spine, and DePuy Synthes.

Author contributions to the study and manuscript preparation include the following. Conception and design: all authors. Acquisition of data: all authors. Analysis and interpretation of data: all authors. Drafting the article: Smith, Kochar, Manjila, Onwuzulike, Anderson, Steinmetz. Critically revising the article: Smith, Manjila. Administrative/technical/material support: Smith. Study supervision: Smith.

References

Neurosurg Focus / Volume 37 / August 2014

7
42. Richardson J, Groen GJ: Applied epidural anatomy. CEACCP 5:98–100, 2005