Standardization of Vaginal Distention Injury in a Rat Model of Birth Trauma And Resultant Stress Urinary Incontinence: A Randomized Controlled Trial

Nicholas Boncher, MD, Gino Vricella, MD, Michael Kavran, MS, Nan Xiao, MD, Firouz Daneshgari, MD, Adonis Hijaz, MD
Urology Institute, University Hospitals Case Medical Center, Cleveland, OH

Introduction

• ~1/3 women experience stress urinary incontinence (SUI) following vaginal delivery
• The rat vaginal distention (VD) translational model mimics fetal passage through the birth canal and the resultant injury causing lowered leak point pressure (LPP)
• Injury is caused by intravaginal inflation of a modified foley balloon to 3 mL
• Altered LPP is a surrogate marker for SUI
• Prior investigators have shown that a greater distention volume leads to greater injury
• Animal size discrepancy with diabetes, obesity, and age represent potential confounders (increased ratio of animal size to fixed VD volume) (Figure 1)

Specific Aims

① Determine balloon pressure variability exerted intrinsically by catheter ex-vivo
② Determine pressure mechanics of catheter in-vivo under standard isovolumetric (IV) conditions
③ Use mean in-vivo pressure at 3 mL balloon inflation to determine target pressure (TP)
④ Demonstrate feasibility of performing VD under isobaric (IB) conditions based on TP
⑤ Compare LPP of IB versus IV versus sham and vs. weight
⑥ Compare intra-group variability of LPP (IB vs. IV groups)

Methods

• Ex-Vivo: 10 Fr modified Foley catheters were inflated to 3.0 mL and connected to pressure transducer. Overall pattern and uniform intrinsic pressure responses to volume were described
• In-Vivo: Ex-vivo method of pressure recording was repeated with catheters inside 5 rats. Mean in-vivo result generated TP
• LPP: 30 rats (Figure 2) were divided into 3 groups and LPP was measured following VD or sham
• Statistics: Students T-test was used to compare groups’ LPP

Table 1: LPP as a function of weight

<table>
<thead>
<tr>
<th>Group</th>
<th># Rats</th>
<th>Slope Estimate</th>
<th>SE</th>
<th>P-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Isobaric</td>
<td>6</td>
<td>0.40</td>
<td>0.86</td>
<td>0.932</td>
</tr>
<tr>
<td>Isovolumetric</td>
<td>7</td>
<td>-0.10</td>
<td>0.95</td>
<td>0.662</td>
</tr>
<tr>
<td>Sham</td>
<td>6</td>
<td>0.32</td>
<td>0.77</td>
<td><ref></td>
</tr>
</tbody>
</table>

Insufficient evidence to conclude that rat size (weight) effects LPP of IV or IB groups different than slope of Sham.

Fig. 3: Ex-vivo catheter pressure curve with increasing balloon volumes followed by 4-hr duration at 3-mL volume.

Fig. 4: In-vivo pressure curve with increasing balloon volumes followed by 4-hr duration at 3-mL volume.

Fig. 1: Diabetic and Obese Animal Models.

Fig. 2: Experimental design for LPP

Fig. 5: LPP and variance of IB, IV, and Sham groups (dark line and box represent mean value and SDev)

Conclusions & Future Directions

• In-vivo mechanics of VD are uniform and predictable and different than ex-vivo (catheter only) pressure patterns
• TP for use as standard for VD injury production is feasible
• TP-generated injury pattern is equivalent to IV standard and more severe than sham
• Variability may not be better with IB vs. IV VD injury
• In-vivo pressures supersede those sufficient to cause ischemic injuries in humans
• Rat VD model remains a well-validated translational model for studies of SUI following simulated birth trauma injury
• IB performed at TP should be the new standard for VD investigations of age, obesity, and diabetes

Acknowledgments

This work has been supported by University Hospitals of Cleveland Family Medicine Fund Award# P0089 (PI:Hijaz, Adonis)