NEUROGENIC BLADDER CAUSES MARKED BLADDER REMODELING IN MICE WITH EXPERIMENTAL AUTOIMMUNE ENCEPHALOMYELITIS

Ahmet Ozer MD1,2, Cengiz Z. Altuntas PhD1, Kenan Izgi MD1,3, Andrew Horowitz MD1, Fuat Bicer MD1,3, Firouz Daneshgari MD1

1Urology Institute, University Hospitals Case Medical Center, Cleveland OH; 2Department of Genetics, Case Western Reserve University, Cleveland OH; 3Department of Clinical Chemistry, Cleveland State University, Cleveland OH

Introduction

- Neurogenic bladder (NGB) causes severe dysfunction of the lower urinary tract and leads to severe deterioration of quality of life and marked morbidity and mortality in ~60% of patients with multiple sclerosis (MS)
- NGB causes marked remodeling of the bladder with wall thickening, trabeculation, and cellule formation (Figure 1)
- Experimental autoimmune encephalomyelitis (EAE) is a widely used animal model to study MS
 - 2-3 weeks after immunization mice develop acute EAE
 - EAE mice exhibit a pattern of relapse/remission (Figure 2) neuroparalytic cycles similar to patients with MS
- The objective of our study was to examine the elements of bladder remodeling in EAE mice as a robust model of NGB

Fig. 1. Cystoscopic Image From Patient with NGB.

Fig. 2. Time Course of EAE Progression.

Methods

Animals
- Female SJL/J mice were immunized via subcutaneous injection to initiate EAE as described previously (Yu et al, 1996)

Evaluations
- Clinical scores (CS) were evaluated 15-30 days after induction of EAE based on 5 levels of neurological disability
 - 0: no disease
 - 1: decreased tail tone or slightly clumsy gait
 - 2: tail atony and/or moderately clumsy gait and/or poor righting ability
 - 3: limb weakness
 - 4: limb paralysis
 - 5: moribund state
- Mice were euthanized at day 70 and bladders harvested for histological studies

Fig. 3. Bladder Weight:Body Weight Ratio Was Significantly Increased in EAE Mice Compared with CFA Controls (P < 0.05).

Fig. 4. Morphological Evidence of Bladder Remodeling with Increasing Clinical Score in EAE Mice.

Fig. 5 Bladder Remodeling in EAE Mice: Total Wall and Lumen Areas Increase With Increasing Clinical Score.

Fig. 6 Bladder Remodeling in Smooth Muscle, Collagen, and Urothelium of EAE Mice.

Results

Conclusions & Future Directions

- In EAE mice higher CS were associated with
 - Increased cross sectional area of smooth muscle, collagen, and urothelium
 - Increased proportion of collagen
- EAE mice represent a valid animal model to investigate the pathophysiology and potential treatments for patients with MS and NGB
- In future studies, EAE mice may be used to further investigate the morphological changes associated with NGB-induced bladder remodeling

Acknowledgments

This work has been supported through NIH Grant 1 R03 HD061825 (PI: Daneshgari).