Translational Intention and CTSC Projects

CTSC projects are directed towards Translational Research.

What is Translational Research? Translational research describes a process of transforming scientific discoveries found in the laboratory, or through clinical and population studies, into interventions or treatments that will reduce morbidity and mortality from disease or inform prevention programs to improve the health of the general population. It includes two interrelated processes:

- Bench and preclinical studies that inform and shape studies and trials in humans
- Studies and trials in humans that leads to adoption of best practices in clinical practice and in the community including cost-effectiveness of prevention and treatment strategies.

Translational science is a multidisciplinary collaboration designed to accelerate the application of findings across levels of human research: FS \leftrightarrow T0 \leftrightarrow T1 \leftrightarrow T2 \leftrightarrow T3 \leftrightarrow T4." The power of translational research is that it is iterative, allowing room for a return to a prior translational stage to respond to treatment barriers or address the underlying mechanisms. The CTSC differs from “basic” research by an emphasis on human biology and disease, and funding is provided to accelerate the process to and document improved community and personal health.

Foundational Studies in Translational Research (FS) incorporates a broad area of pre-clinical approaches designed to inform an investigator about a pathway, pathophysiology, or treatment approach. Examples of experimental methods used for this purpose are animal models of human disease, human blood or cell lines, development of questionnaires, computational models, and human physiological studies, all which are directed at mechanisms and presentations of human disease. For the purposes of CTSC program, these disparate approaches are assigned as “bench” research and may or may not require approvals from human or animal use committees.

T0 research can:
- Show a clear path towards changing a therapeutic or diagnostic paradigm
- Identify the functional significance and mechanisms for genomic polymorphisms identified by human genome wide association studies
- Study mechanisms or derive modifications of cells, proteins and DNA present in human disease processes
- Develop a reagent or instrument for detection of disease or new mechanism
- Collect human tissue from disease and control subjects to define, describe, or inform clinical studies and trials
T1 Research translates discoveries made at the bench to first testing in humans. Typically these studies (case studies, phase 1 and 2 clinical trials) take place at the patient bedside in an academic medical center. The focus of these studies is to determine what can actually work (e.g., clinical efficacy research) and will answer questions like, “An academic medical center research lab has discovered a new treatment. Will this new treatment work in a small number of patients in the same medical center?”

T1 Research can:
- Lead to the transfer of disease mechanisms identified in the laboratory into the development of new methods for diagnosis, therapy, and prevention in humans
- Facilitate defining health outcome and intended use
- Evaluate gene/environment/disease associations
- Describe biological mechanisms that link genes with disease processes
- Inform the design of clinical trials
- Establish analytic and clinical validity.

T2 Research addresses clinical efficacy of work conducted in the first phase of the translation process (T1). It translates results from early clinical studies to controlled observation studies and phase 3 clinical trials for bedside patient care and health decision making and can answer the question, “Will the new treatment tested in a small number of patients in the medical center work in a large number of patients in the same medical center as well as other academic medical centers and clinic sites?” Also, T2 addresses the questions of who benefits from new treatment (e.g., outcomes, comparative effectiveness, and health services research).

T2 Research can:
- Establish clinical efficacy
- Identify knowledge gaps (e.g., benefits, costs, safety)
- Be used in evidence-based processes

T3 Research is the third phase where the results from T2 research is translated into clinical practice. It is the ‘how’ of health care delivery so treatments and interventions studied in T2 are reliable in all patient care settings and improve health of patients overall. T3 Research relies on the distribution and implementation of the results found in T2 and will answer questions such as:
- Is the treatment being used widely? If not, why not?
- Has the increased use raised:
 - New clinical questions?
 - New barriers?
Gaps in care?
In this practice-oriented translation phase, the following can be measured and provide a basis for on-going research:

- Health care policy, quality, and cost
- Implementation of interventions and health care system redesign
- Scaling and spread of effective interventions

T4 Research is a phase where one builds on the results of **T3** to identify a best practice approach and to reach patients nationwide so health care providers not only understand the new treatment but will start to use it. Also, it includes:

- Defining outcomes of interest
- Identifying and developing appropriate metrics
- Implementing surveillance to determine benefits and harm
- Re-evaluation of guidelines and policies to identify needed changes
- Community education on the relationship between research and health, the process of research, and the distinction between research and medical care

References:

- http://icts.uiowa.edu/content/glossary-terms
- NIH RFA-RM-07-007 CTSA RFA
- JAMA article, *Practice-Based Research – “Blue Highways” on the NIH Roadmap* January 24/31 2007, Vol 297, No 4, 403
- Based on Khoury et al Genet Med 2007